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Abstract: Optical projection tomography (OPT) is a 3D imaging alternative to conventional
microscopy which allows imaging of millimeter-sized object with isotropic micrometer resolution.
The zebrafish is an established model organism and an important tool used in genetic and chemical
screening. The size and optical transparency of the embryo and larva makes them well suited for
imaging using OPT. Here, we present an open-source implementation of an OPT platform, built
around a customized sample stage, 3D-printed parts and open source algorithms optimized for
the system. We developed a versatile automated workflow including a two-step image processing
approach for correcting the center of rotation and generating accurate 3D reconstructions. Our
results demonstrate high-quality 3D reconstruction using synthetic data as well as real data
of live and fixed zebrafish. The presented 3D-printable OPT platform represents a fully open
design, low-cost and rapid loading and unloading of samples. Our system offers the opportunity
for researchers with different backgrounds to setup and run OPT for large scale experiments,
particularly in studies using zebrafish larvae as their key model organism.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Small size, optical transparency and ease of breeding are a few of the properties that makes
the zebrafish (Danio rerio) such a desirable model organism to use for large-scale genetic or
chemical screens. Compared to traditional cell-based screens, zebrafish phenotyping has the
unique advantage of using an intact organism. The zebrafish is a highly complex vertebrate
that possesses discrete organs and tissues like brain, heart, kidneys, intestine, muscular skeletal
system and sensory organs, and many of the fundamental mechanisms are conserved in humans
[1]. Furthermore, the application of genome editing tools such as CRISPR-Cas9 to the zebrafish
have enabled researchers to study consequences of virtually any genetic alteration [2,3]. The
large interest in zebrafish has generated a high demand for rapid 3D imaging and analysis of these
animals. To address this, automated 3D analysis of gene expression in zebrafish larvae has recently
been developed for fluorescent readouts and optical sectioning [4]. Although fluorescent probes
are most commonly used in 3D imaging, they often require expensive hardware, suffer from
photobleaching, have low signal intensity, and undergo quenching under common tissue clearing
protocols. Using a brightfield stain, such as chromogenic in situ or Alcian blue, provides good
contrast using only white transmission light. These staining techniques are also less sensitive,
and photobleaching and quenching are not a concern when using brightfield stains. Furthermore,
these staining techniques are well-established, inexpensive and commonly used in zebrafish
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research. Moreover, the biological variation between fish requires large scale experiments which
is usually time consuming and requires fast sample handling and imaging.

Optical projection tomography (OPT) is a well-suited low-cost alternative for 3D imaging
of zebrafish. It can generate 3D isotropic high-resolution images of transparent (optically
cleared or intrinsically transparent) mm-sized samples in both brightfield and fluorescence. OPT
computationally obtains volumetric information from a collection of 2D images acquired at
multiple angles. Compared to techniques such as the confocal microscopy that needs optical
sectioning of samples in depth, OPT and many other tomography techniques acquire depth
information by rotating the sample, resulting in isotropic resolution in all three dimensions. The
isotropic properties in volumetric data is ideal when aligning and comparing phenotypes from
multiple samples. OPT is a simple and fast technique compared to, e.g., standard confocal
microscopy. Whole fish imaging can be done faster using light-sheet [5], however, it requires a
much more complex system and is limited to using fluorescence. Due to the size and optically
transparent nature of the zebrafish larvae they are ideal to study using OPT in brightfield.
Furthermore, zebrafish are often used for high throughput screening, which requires a simple and
rapid acquisition [6].

Over the last decade, researchers have developed the OPT technology to be applied in a
wide variety of applications using customized implementations [7—11]. To ensure successful
reconstruction using OPT, it is important to correct and minimize errors that occur during rotation
and acquisition. Van der Horst ef al. proposed a deconvolution method to correct resolution
blurring from imaging optics [12]. Birk et al. presented computational methods for correcting
unevenly distributed background, intensity spikes and refractive index mismatching [13]. They
also proposed methods for correcting specimen movement using in-vivo OPT data [14]. The
motions errors are also addressed by Zhu er al. [15] based on Helgason-Ludwig consistency
condition. Dong et al. provided a two-step method for correcting center-of-rotation (COR) errors
using sinograms [16]. Tang et al. developed a post-processing pipeline for OPT including a COR
correction algorithm based on feature point tracking using sinograms [17]. However, methods
for COR correction based on point tracking in the sinogram is dependent on the features on the
sample, thus it can be difficult to track correctly if the image has low signal-to-noise ratio and
the features in the sample are not suitable to track. Among the tomography system properties
studied the COR error is an important aspect not only for OPT, but also for other tomography
data. Yang et al. proposed an image cross correlation method to find COR using data from CT
system [18]. Vo et al. calculated the COR based on Fourier analysis of the sinogram using X-ray
tomography [19]. Moreover, there are several reconstruction-based methods used to correct
the COR error. Figueiras et al. presented a method to find optimal COR by detecting of the
variance sharpest local maximum of reconstructed slices [20]. An approach developed by Yu
et al. iteratively register projection images from reconstruction to the raw projection data to
achieve better reconstruction quality in X-ray tomography [21]. Another approach using X-ray
tomography is proposed by Cheng et al. [22] where the algorithm optimized the total variance of
the reconstructed data to correct COR errors. However, each system has different limitations and
the method of choice must be carefully chosen to suit the system properties and the samples to be
imaged.

In this paper we present the design of a customized cost-effective brightfield OPT system.
The system is optimized for easy loading and unloading of zebrafish larvae and the cost of the
OPT sample stage is brought down using 3D printed components. We developed an open-source
graphic-user-interface (GUI) and designed 3D models for the system, making it easy for anyone
to setup and get started with. Furthermore, we have characterized our system and developed a
workflow that matches the hardware and software to compensate for the errors in the system.
We present generalized automated algorithms that effectively improves the OPT reconstruction
quality by correcting COR errors using a two-step image processing approach. Finally, we
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demonstrate the reconstruction results using real data from fixed stained and live zebrafish larvae
as well as an application for phenotypic quantification.

2. Methodology

2.1. Overview of the platform

Our Optical Projection Tomography (OPT) setup is designed for rapid imaging of zebrafish larva
in brightfield. We have developed a graphical-user-interface (GUI) for data acquisition and an
automated reconstruction workflow for generating 3D data. Our platform can be used for imaging
samples from 200 to 860 um in diameter, which corresponds to zebrafish larvae at approximately
from 1 to 9 days post fertilization (dpf). The system acquisition time of one fish is 6.8 seconds
for a full 360-degree rotation, 1 degree per frame. Following the acquisition, we reconstruct the
3D fish using our optimized reconstruction algorithms.

2.2. Sample preparation

All zebrafish larvae were collected, housed, and treated as previously described by del Pozo at
el. in [23]. Pigmentation in larvae used for in situ hybridization was inhibited by addition of
0.003% 1-Phenyl-2-thiourea (PTU) to the embryo water. Zebrafish were collected at 3 dpf and
fixed overnight at 4°C using 4% paraformaldehyde in phosphate buffered saline, washed once in
100% methanol and stored at -20 °C in 100% methanol. In situ hybridization was performed
as previously described in [24]. Hybridized probes were visualized using BM purple (Roche,
Switzerland) as substrate for alkaline phosphatase precipitation. Embryos were cleared in 99%
glycerol.

Larvae for skeletal staining were collected at 5 dpf and fixed overnight at 4°C using 4%
paraformaldehyde in phosphate buffered saline, washed once in phosphate buffered saline and
transferred into 50% ethanol. Alcian Blue and Alizarin Red staining was performed right away
as described previously in [25].

Living zebrafish larvae have been anaesthetized in system water containing tricaine prior to
imaging.

Appropriate ethical approvals were obtained from a local ethical board in Uppsala (C 164/14).

2.3. Design of experimental setup

The OPT setup (Fig. 1(A)) consists of three major parts: brightfield illumination, sample stage
with rotating capillary and a stepper motor, and lens system with a CMOS detector. The
experimental setup can be found in Fig. S1 in Supplemental Document and the source codes can
be downloaded from https://github.com/Hq-Z/zOPT.

For illumination, we use a white LED with a diffuser to generate evenly distributed light over
the entire field of view. A sample stage is placed between the camera and the light source. On
the sample stage we have placed a quartz cuvette filled with glycerol. The sample stage can
be controlled using a linear X, y, z stage. A tapered glass capillary with an inner diameter of
0.86 mm and an outer diameter of 1.50 mm is holding the sample and immersed in the cuvette.
The capillary is connected to a stepper motor that controls the rotation of the sample. The
stepper motor is controlled trough an Arduino UNO REV3 device and a custom-made MATLAB
GUI. The lens system consists of a 3x telecentric objective (Edmund optics) with a depth of
field of 0.36 mm and a numerical aperture of 0.043 in air. We use a FLIR camera (Blackfly
S BFSU3-23S3) with 8 bits data depth, pixel size of 3.45 um and sensor size of 6.624 mm X
4.140 mm, resulting in a field of view of 2.208 mm X 1.380 mm. The pixel resolution is 1.15
um and the platform resolution is estimated to be 7.80 um according to the Rayleigh criterion
(resolution=0.61*A/NA, where A =550 nm and NA =0.043). The maximum sample depth for
the system is estimated to 0.72 mm, based on the method used in [26]. The CMOS camera used
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Fig. 1. A) Schematics of brightfield OPT setup. The dotted green lines represent the light
path, and solid lines represent signals transmitted by wires. Bold arrows represent sample
loading and unloading respectively from the same port of the capillary. The capillary is
rotated with a stepper motor and the CMOS camera acquires projections of the sample during
rotation. B) An RGB projection from the OPT system using 3 dpf in situ stained zebrafish.
The dashed lines represent the inner walls of the glass capillary. C) 3D reconstruction results.
Left: 3D volume of three channels rendering using Volview software.(Kitware Inc.) with
pseudo color. Right: 3D volume of green channel. A slice of the sample in z direction
marked in red (solid line) is demonstrated. Maximum intensity projection views of the
region marked in red (dashed lines) in the volume rendering. Maximum projections are
made from ventral, frontal and sagittal views in the x-y-z coordinates.

in this paper can be exchanged to a camera of choice depending on budget and application. For
high contrast brightfield projection data, such as the ones used in this paper, this camera has
provided good results. However, if the system is intended to be used mainly for fluorescence a
more sensitive camera with higher dynamic range should be used.

For the glass capillary a stopper can be added to the bottom end to fix the sample in position.
This can be done with an adhesive of a matching refractive index (RI) [27]. Here, we decided
to create a tapering of the glass capillary instead, which was done by a micropipette puller
(Flaming/Brown micropipette puller, Sutter Instruments, model P-1000). To ensure optimal
distortion free imaging through the glass capillary, we considered a few experimental details.
First, to reduce distortion from refraction the RI of the glass capillary has to match the RI of
the surrounding liquid. Therefore we choose to use 99% glycerol (RI 1.474) and a borosilicate
glass capillary with RI 1.47-1.49 [28], producing minimal distortion from refraction. Second, a
smooth rotation is crucial to reduce the unwanted motion of the sample caused by the stepping
of the motor. To achieve this, we used a stepper motor with a driver carrier operating at 1/128
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micro-steps (12800 steps per revolution) resulting in a smooth rotation without visible vibration.
Third, calibrating and aligning the position and tilt angle of the stage is crucial. In practice, this
type of error can be corrected by checking the maximum intensity projection (MIP) from a full
rotation video. The image features on the sample should produce straight lines in the MIP, while
an elliptical shape in the MIP is an indication of a tilt between the capillary and detector [10].

Our sample stage is made from 3D-printatble components enabling the use of a wide selection
of stepper motors. By using customized 3D printed components as capillary holder, we allow
capillaries with different diameters attached to the stepper motor in order to handle samples of
different size and age.

In summary, our setup is compact, and all the optics related components can be built on top
of a 200 x 250 mm flat surface. Note that the cost for the basic setup is approximately €1300,
where the lens system and camera contribute to approx. 90% of the cost. However, depending on
the 3D printing quality of the different components, support structures might be necessary to
improve rigidity and alignment accuracy, adding to the cost. There are other optional components
such as, translational stage and aluminum breadboard that can be added to the system. These
optional components and the full price list can be found in Supplemental Document Fig. S1C.

2.4. Data acquisition

To load a specimen into the system, first we transfer the fish into a needle connected to a syringe.
Then the syringe needle tip is placed in the fluidic port and the fish is injected together with some
liquid into the vertically configured glass capillary. The fish will be stopped by the tapering and
immobilized during imaging. By withdrawing the liquid from the same fluid port using a syringe
the fish can be easily unloaded. The entire process for loading, imaging and unloading takes
about 2 minutes per fish. With the easy loading and unloading feature and a user-friendly GUI
for data acquisition, this allows the user to sample up to 200 fishes per day in a typical screening
experiment for 8 hours. In addition, the automated processing pipeline can be run offline, thus
not limiting the acquisition time.

During the acquisition the CMOS camera collects the transmitted light that passes through the
rotating sample (Fig. 1(B)). The rotational video is acquired using a FLIR camera operating at
a shutter time of 15.0 ms, a frame rate of 53 fps and with an image size of 1920 x 1200 pixel.
Each channel in the acquired OPT data can be reconstructed individually based on a filtered back
projection algorithm. In Fig. 1(C) a RGB reconstruction of an in situ stained fish can be seen.

2.5. Synthetic data generation

To validate our reconstruction, we use synthetic data and simulate the errors in the OPT system.
There are two types of error which can significantly reduce the quality of reconstruction. The
first type appears as a constant value that shift the COR for all projections. This error comes from
the misalignment between the sample stage and the imaging system. We denote this as type I
error. The second type of error causes different shifts to the COR in each projection. In our OPT
system this can be caused by vibrations from the stepper motor that are transferred to a rigid
capillary, resulting in movement of the center of rotation during the acquisition. A small random
or periodic deviation of the sample position can be picked up by the OPT system which has
micrometer resolution. This is denoted as type II error. Other errors are originated from limited
depth of field of the optical system, small amount of refractive index mismatching, a small tilt
angle of the capillary to the detector plane, inhomogeneous sample environment and light source.
We address the depth of field limitation by placing the focus at % of the sample to cover the
maximum sample range during OPT imaging. The tilt is controlled by the alignment method
introduced in section 2.3 using MIP. The inhomogeneous background can be reduced by placing
the diffusor in the front of the sample and applying background removal by image processing.
These approaches lead us to focus on the type I and II errors that remains in the system and has
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visible impact on the quality of the reconstruction. Therefore, in our simulations we worked under
the assumption that the sample, as well as the capillary, were rigid and there was no movement of
the sample during the recordings. The COR errors were considered in both the x-direction (i.e.
perpendicular to the light path) and the z-direction (parallel to the light path). We measured that
small movement in the z-direction contribute to less than 2% of the depth of field where such
deviation from the focus had little influence on image quality and the reconstruction. On the
other hand, the same amount of shift errors in x-direction is visible in the image at focus and can
cause blurred edges in the reconstruction. Therefore, we focused mainly on movement along the
x-direction (Fig. 2(A)). To generate the simulation data we used a 2D Shepp-Logan phantom
image in MATLAB and applied the radon transform to get tomography data with an angular
resolution of 1 degree per projection (Fig. 2(B)). After generating 360 projections we applied
image translation in the x-direction. For the type I error we used a constant value to shift all the
projections. For the type II error we generated them in two parts:(1) a random error simulated by
uniformly distributing random numbers generated with the distribution’s mean as zero and (2) a
periodic error simulated with a sinusoid wave. To generate these errors we simulated 10 pixels
drift in the z direction as type I error and used 5 pixels as the amplitude of periodic and random
noise as type II error in 256 X 256 and 512 x 512 templates. The final reconstructed image is
obtained by applying filtered-back projection (FBP) reconstruction algorithm using the sinogram
containing the errors (Fig. 2(B)). The reconstruction of the phantom image with different types
of synthetic errors are presented in Fig. 2(C).

A) B)

Light source

Original Add noise to sinogram Simulation image
S

Detector Type T noise (Constant) Type IT noise (Periodic) Type I noise (Random)

Fig. 2. A) Schematics of the OPT system for simulation. The solid line with single arrow
represents the rotation of the capillary; the dotted lines with arrow represent the light path; the
bold arrow represents the direction of simulated motion errors. B) Processes for generating
simulation data using a phantom image in MATLAB. C) The effect of COR errors on the
final reconstruction.

3. OPT reconstruction workflow

To ensure high-quality 3D reconstruction from OPT, we must correct for the system errors
identified in the previous section. Our pipeline for OPT image processing consists of pre-
processing, extracting 360 degrees rotation data, two-step COR correction method, which we
denote as gCOR representing a global center-of-rotation correction method, and iRRpw which is
an iterative reconstruction and registration approach with pairwise strategy. Finally, we get the
tomographic reconstruction using FBP (Fig. 3(A)).



Research Article Vol. 11, No. 8/1 August 2020/ Biomedical Optics Express 4296 |

Biomedical Optics EXPRESS -~

A) B)
Alcian blue gCOR

1. Load OPT stained Inputs: Projections /.
data 9 dpf fish larva

1. Use /to calculate the maximum

projection P.
2. Determine symmetry axis in P
Single channel using Eq. 2 and 3, and calculate

2. Pre- inversed transform coefficient Ax, Ay, Ar.
processing background

corrected image 3. Rigid transform all projections in 7
using Ax, Ay, Ar.

Outputs: Updated projections /.

iRRpw
Inputs: Projections /.

3. Extract 360
degrees data

1. FBP of / to get reconstruction R.

0 90 180 270 360

v
e
v

Green channel
reconstruction

2. Radon transform R to get
projections /' with the same number
and angle as /.

3. Compare cach projections between
Iand I, align all projections of / to
1’ using rigid registration to get

4. COR
correction

liRR'

4. Pairwise strategy to align second
half of /;z, to its first half by
registration. Get Jizp,,,-

5. FBP

5. FBP of /;,, to get R and repeat

Fig. 3. Workflow of OPT reconstruction is presented with examples using Alcian blue
stained fish. The pre-processing steps are for brightfield OPT data. Solid arrows represent
the data flow. The dashed line in the images of step 5 represents the image center line and the
solid line represents the detected symmetry axis. B) Detailed workflow for COR correction
using gCOR and iRRpw method.
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3.1.  Pre-processing

The unevenly distributed light intensity across the projection image can be compensated using a
background image. The background image can be acquired before a sample is loaded into the
system or it can be computationally generated by first detecting background pixels and then use
them to interpolate pixel values in the sample region. According to Lambert-Beer’s law, we
first divide each image with the background image, then invert the intensity values and apply a
logarithm making the intensity linear to the light absorption model for brightfield OPT [9].

After applying the background correction and scaling, we extract the data corresponding to
a full rotation. To ensure 360 degrees for high-quality tomography reconstruction we acquire
our data with ~10% overhead by having 400 frames. We calculate 2D correlation between a
starting projection and candidate projections from 400 frames to find one projection with a
maximum value that represent the projection at 360 degrees. The averaged angle interval between
consecutive projections can be calculated by dividing 360 by the number of frames in a full
rotation.

3.2. COR correction and reconstruction

We have developed a two-step pipeline for correcting the errors during rotation; a global center-
of-rotation correction method (gCOR) followed by an iterative reconstruction and registration
approach with a pairwise correction strategy (iRRpw) (Fig. 3(B)). This two-step pipeline is
necessary to deal with the two types of errors we defined in section 2.5 Synthetic data generation.
The first method is a global method that detects the symmetry to estimate COR in a projection
image. This projection image is calculated as,

N
P(x,y) = D fU(x,y, 1), (1)
i=1

where I represent the input data, x and y are the coordinates in each projection, i is the projection
number and the total number is V. The function f can be chosen as either the summation or
the maximum over all projections. In the case that f is the maximum over all projections, it is
known as the maximum intensity projection. We assume the projections in / rotates around an
axis passing through the image center in y direction, denoted as symmetry axis. The resulting
projection P and its mirror P’ with respect to the x-axis are compared using 2D correlation
coefficient. We then optimize the following equation to find the optimal symmetry axis.

% %] (M(x,y) = M)(M'(x,y) = M")

I, )

argmin [1 - — —2
acRbeR,reR \/Z > M, y)—M) Y, X (M'(x,y)—M")
Xy Xy

M = R (Tap(P(x,y))), M’ = FlipY (M), 3

where R,(A) represents rotating a matrix A by r degrees around the matrix center; 7,,(A) represents
the translation of matrix A by a and b in the x and y directions, respectively; FlipY(A) flip a
matrix A with respect to the center line to get its mirror. By solving this optimization problem,
we apply a rigid transform for all projections in 7 using half the value of a, b and r, so that the
rotation symmetry is along the axis passing through the projection center in y direction. We
denote this symmetry axis as global rotation axis. This method is robust to pixel noise and is
used to detect a common COR shift for all the projections.

This process is followed by an iterative reconstruction and registration approach (iRR) which
resolves the remaining COR errors (see [21] for a similar method). An inaccurate COR estimation
and slightly miss-aligned projections will produce a blurred structure in the reconstruction with
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reduced resolution and more artifacts. By aligning the experimentally acquired projections to their
corresponding radon transformed projections from this blurred reconstruction, all experimental
projections will be re-aligned to the center of a blurred structure. These newly aligned projections
are used to reconstruct a new structure with improved quality. This is done multiple times to
further improve the reconstruction quality. In the implementation of iRR we first reconstruct the
3D image using FBP. The calculations are accelerated with GPUs using the Astra toolbox [29].
We then apply a radon transform to generate a dataset I” which has the same image size, rotation
angle interval and direction, and projections as the input /. We take each projection in I and apply
arigid transform to align with its corresponding projection in I’. To find the best alignment for
each frame, we solve the optimization function as described in Eq. (2) with M as a projection
in I and M’ as a corresponding projection from /’. The optimal rigid transform parameters for
each projection are applied to transform each projection in / to correct the COR errors. Once
all projections are transformed a new 3D reconstruction is generated with FBP. This process is
applied iteratively to improve the reconstruction.

To speed up the iterative process and get better reconstruction results in fewer iterations
using the above-mentioned method, we used a pairwise strategy to align all projections, and
we denote this method as iRRpw. First, we use FBP to get a 3D volume R. Second, we use the
radon transform to generate projection images I’ from R. Third, we perform a rigid alignment of
all projections in I to the generated projections from I’ to correct COR errors for projections
ranging from 0O to 360 degrees (I;zr). Fourth, we align the projections in I;gg from 0O to 180
degrees to that of its mirrored pair projection in the range from 180 to 360 degrees using only
translation to get l;ggpy. This is valid since each projection in tomography data and its 180
degrees counterparts, in an ideal case, should have identical information (mirrored along the
COR). In practice, even if the specimen is only half in focus, a projection still contains enough
similarity with its 180 counterparts to align well using translation. Finally, we complete one
iteration by applying FBP to I;gg,, to get the 3D reconstruction. In the next iteration, we use
Iirrpw as input to the reconstruction in the first step mentioned above. This process is conducted
iteratively to improve the reconstruction. Finally, we complete one iteration by applying FBP to
Iigrpw to get 3D reconstruction. In the next iteration, we use Ijrgpy for reconstruction and radon
transform as in the first step mentioned above. This process is conducted iteratively to improve
the reconstruction.

4. Results and discussion

Here we first quantitatively evaluate our workflow for tomography reconstruction using synthetic
data. Then we demonstrate generation of high-quality 3D reconstruction of real zebrafish larva
data using our OPT system and the automated workflow. Finally, we present a phenotypic
characterization in a mutant line using data obtained with our system.

4.1. Reconstruction using simulated data

Simulated data are acquired using the methods described in the section 2.5 Synthetic data
generation. Figure 4(A) shows the reconstruction results from the artificially created data with no
correction, gCOR and iRRpw. The sum of absolute difference (SAD) of pixel-to-pixel intensity
between the reconstructed image and the phantom image, ground truth, is used to quantify the
amount of errors in the reconstruction. To measure the similarity between the reconstruction
and the ground truth regardless of their relative position, we applied a rigid 2D registration
before calculating the SAD. In Fig. 4(B) the SAD between the data and the ground truth in each
processing step is shown. After applying the gCOR step, the SAD of the result is decreased to
50% compared to that in the input data. However, this step shows limited improvements in SAD
since Type II errors cannot be handled by this method. The following step that uses iRR based
methods to estimate Type II errors in each projection is robust to noise and can effectively reduce
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the SAD. We ran the simulation 5 times to get an average SAD and standard deviation. For a
512512 reconstruction phantom, using the iRRpw the SAD is reduced from 50% to 28% after
the first iteration and converges at around 10 iterations with a SAD down to 11%. Similarly, for
256x256 template, both iRR and iRRpw methods can reduce COR errors 4 times compared to
the results from gCOR. Note that with the pairwise strategy, the SAD error decreases faster than
the method without in the first iteration. However, the processing time per iteration for iRRpw
takes approximately 15% longer compared to the iRR approach. Thus, for the test images the
iRRpw method is always 1 iteration better than the iRR method. Within 6 iterations, the iRRpw
achieves better execution time and accuracy in terms of the SAD than that of the iRR method.

A) B)
& 18876 —@—iRR-256
] == iRRpw-256
Zo .::3 ) 9529 —4—RR-512
: & iRRpw-512
(5]

gCOR

iRRpw

536
e

Compare to the 01 1 23 45 6 7 8 910
ground truth gCOR iRR methods

Reconstruction

Fig. 4. A) Reconstructed image (left) and overlay with ground truth for each method (right).
In the comparison image the reconstructed image is shown in green and the ground truth
is shown in magenta. B) SAD of image intensities between reconstructed data and ground
truth for each step in the algorithm. Mean and standard deviation of SADs are calculated
based on 5 trails and the image intensity values are ranging from 0 to 1. Two sizes of image
were tested using 256x256 and 512x512. The 0 in the horizontal axis represents the FBP
reconstruction results without COR corrections. The gCOR is applied only once in the
process and iRR methods are applied with 10 iterations with their SAD results labelled at
iteration 1, 3 and 10.

In further analysis of our workflow, the results show that using gCOR followed by iRRpw is
the most accurate combination of methods (Fig. 5(A)). We also found in iRRpw + gCOR that
the iRRpw alone can correct the type I error without the gCOR, however, it cannot provide the
same accuracy as with gCOR applied before the process. Furthermore, we analyzed the total
variance (TV) which is used in some reconstruction-based approaches [22,30] to find optimal
reconstruction parameters using variational methods. By using the iRRpw method, the total
variance decreases both with gCOR and without gCOR (Fig. 5(B)). However, having the gCOR
before iRRpw allows the TV value to converge faster compared to the one without. This result
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indicate that the total variance can be used to evaluate the iRRpw process and stop the iteration if
the TV value is larger than its previous value. In practice, we applied this criterion to iRRpw
together with a maximum iteration value in processing real OPT data as a trade-off between
performance and speed.

A) B)
~—@—iRR+gCOR —#—iRRpw+gCOR —o— without gCOR === with gCOR
o=ty oCOR+iRRpw 2800

5395

5000
\ 2500
A \
b v E
\
956 2200
548
500 1900
0 1 2 3 4 5 6 7 8 910 11 L 2 3 4 5 6 7 8 9 10
Processing step iRRpw iterations

Fig. 5. A) Comparison of three different combination of methods for COR correction and
reconstruction in terms of SAD. We used 256x256 template size with the same noise level
for all experiments. The processing step at 0 represents the reconstruction result without any
correction. Dashed lines represent the single step process of gCOR and solid lines represent
the process of iRR based methods with 10 iterations. B) Total variance of the reconstructed
image in each iteration of iRRpw process.

4.2. Demonstration of workflow using real data

We tested our OPT system and automatic reconstruction using Alcian blue stained 5 dpf zebrafish
larvae and in situ stained 3 dpf larva in 99% glycerol as well as an example of a live 5 dpf larva in
water (Fig. 6(A)). We are using a warm white illumination and based on its spectrum we choose
to use the green channel to make the Alcian blue stain as well as the in situ stain clearly seen in
the reconstruction. However, other channels might be more useful in other applications. We
applied pre-processing, gCOR and iRRpw algorithms to generate 3D data of the stained fish
(Fig. 6(B)).

A detailed analysis of the quality of the reconstruction results in 2D is presented in Fig. 7(A).
We observe from the results in the first row of Fig. 7(A) that the COR error can be reduce by
both gCOR and iRRpw method. Moreover, in our experiment using OPT data, we found the
reconstruction result is dependent on the image quality and features. For example, in the slice of
around the body of the Alcian blue stained fish, the projection contains strong image features with
high contrast. Therefore, the gCOR method can provide relatively good alignment. However, in
the slice near the fish tail, the intensity is relatively low and COR errors cannot be corrected for.
On the contrary, our iRRpw method show robustness to image noise and can provide reliable
COR correction. The robustness of iRRpw algorithm is important for OPT data since the depth
of field of the OPT system is limited. In our system the theoretical depth of field is 0.36 mm,
which is focused at 4 of the sample to cover a maximum depth of 0.72 mm. The capillary has an
inner diameter of 0.86 mm, thus, the light scattering and blurred effects from the limited depth
of focus can blur the image during the sample rotation. On the other hand, the iRRpw based
registration is robust to noise in the image and can iteratively improve the reconstruction quality.
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A) B)
Alcian blue stained, 5 dpf
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400 pm
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o

Fig. 6. A) Three examples of brightfield OPT images of zebrafish larvae and B) their
corresponding ventral, frontal and sagittal view of reconstructed data using green channel
and with volume rendering by Volview.

We compare the results from iRRpw in each iteration as in Fig. 7(B). We observed significant
improvement of the alignment from the second iteration compared to that the first iteration. Since
the results are similar after three iterations, in practice we set the maximum iteration value set to
3 for this dataset.

The reconstruction of 855x855x950 voxels data and single-channel with 3 iterations processed
by our MATLAB implementation of iRRpw takes approximately 6 min to run on a 3.2 GHz Intel
Core i7-8700 processor with 32 GB memory and using NVIDIA GeForce GTX 1060 for GPU
acceleration.

4.3. Quantification of phenotypic differences

Visual verification of data is often not enough to identify true phenotypes in zebrafish data
and statistically validated results is needed. In zebrafish there is a large fish to fish variation
and therefore subtle phenotypic difference can often be difficult to distinguish from individual
variations. Allalou ez. al developed a method for statistical analysis of in situ stained zebrafish
[27]. We have used the same workflow on our Alcian blue stained zebrafish to identify statistically
significant phenotypes in a mutant fish line. The wildtype fish were initially aligned and used
to create an average reference fish using an Iterative Shape Averaging (ISA) algorithm [31]. In
the next step all wild-type (n=10) and mutant (n=12) zebrafish were aligned to the reference.
Averaged patterns using aligned wildtype and mutant fish can be created as shown in Fig. 8(A).
A voxel-wise method was used to detect voxels that are significantly different between the groups
using the Mann-Whitney U test. The p-value threshold is set using false discovery rate (FDR)
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A)
Reconstruction of 5 dpf Alcian blue stained fish (Fish body, green channel)

400 pm

Without COR correction gCOR iRRpw
Fish tail, green channel

Without COR correction gCOR iRRpw

Reconstruction of 5 dpf Alcian blue stained fish using iRRpw

I
400 pm

Iteration 1 Iteration 2 Iteration 3

Fig. 7. A) Single slice is selected for reconstruction with their capillary removed and we
compare reconstruction results in each step and with two approaches for correcting type 11
error. The bold arrows represent the workflow and the thin arrows point to edges that used to
compare reconstruction differences. B) Intermediate reconstruction results from the iRRpw
method at iteration 1 through 3.
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[32] and a permutation test [33]. The FDR was set so that those random groupings showed only
a small number of significant voxel differences (p <2.5x 107#; FDR =0.045). A maximum
projection of the significant result can be seen in Fig. 8(B). The phenotypic differences identified
within the first pharyngeal arch in the mutant zebrafish line were expected and confirmed by the
OPT analysis. Phenotypic differences detected outside the first pharyngeal arch region however
were unexpected and might not have been detected without this type of analysis.

A)

400 um

N 45

YV

800 pum

Fig. 8. A) OPT of wild-type (left) and wildtype (right) zebrafish stained with Alcian blue
at 5 dpf. B) Maximum projection with color-coded regions showing significant difference
between wild-type (n=10) and mutant (n=12) groups. Cyan shows voxels with statistical
higher intensity in wild-type group and magenta shows voxels with statistical higher intensity
in mutant group. The thin arrows point to the circular areas contain expected differences.

5. Conclusions

We presented a design of a cost-effective brightfield OPT setup capable of rapid loading and
unloading of zebrafish samples in water or glycerol. We also presented our data processing
workflow and developed a two-step algorithm for correcting COR errors identified in our OPT
setup. The algorithm contains a global method (gCOR) using intensity projection image followed
by an iterative reconstruction and registration method (iRRpw) to correct COR errors in the
system and obtain high quality 3D structure. We have validated our algorithms for COR correction
using both simulated images as well as experimental data of zebrafish larvae. The workflow is
automated and generalized without setting system or sample related parameters. It can be run
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offline for batch processing of large datasets which is potentially useful for high throughput OPT
systems.

We have developed a complete system that can be setup and run by anyone interested in
performing brightfield OPT. The system is cheap compared to a microscope and with our detailed
instructions it is easy to setup and customize. All acquisition and reconstruction algorithms are
packaged into a user-friendly GUI. We believe this system can benefit the zebrafish research
community and improve imaging, visualization and analysis of a wide range of phenotypes.
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